Ontvang nu dagelijks onze kooptips!

word abonnee
IEX 25 jaar desktop iconMarkt Monitor

Koffiekamer« Terug naar discussie overzicht

Klimaatdiscussie: opwarming aarde door mens of natuur

39.206 Posts
Pagina: «« 1 ... 5 6 7 8 9 ... 1961 »» | Laatste | Omlaag ↓
  1. [verwijderd] 20 september 2018 06:50
    quote:

    Ronald Engels schreef op 20 september 2018 01:23:

    Sorry de link werkt niet, dus zie commentaar Landcruiser70 op 19 sept. 2018, pagina 5, betreffende interview Professor Harper, daar werkt de link wel?

    Natuurlijk staat het iedereen vrij hieraan te twijfelen!
    Deze link: youtu.be/FsTweZIRpos
  2. [verwijderd] 20 september 2018 07:13
    quote:

    BEN RisQuant schreef op 19 september 2018 20:15:

    En dan bedoel ik niet perse dat IPCC overdrijft met alles. Maar mis=mis en betekent dat men het klimaat nog steeds niet goed genoeg begrijpt.

    www.scientificamerican.com/article/ho...

    Vandaar

    1) meer divers onderzoek en discussie

    2) andere maatregelen nemen tegen negatieve effecten opwarming / zeespiegelstijging dan hopen dat CO2 emissie reductie gaat helpen

    Hard gegeven is wel dat fossiele brandstoffen (juist kolen-en hout .. en in veel mindere mate gas) .. fijnstof veroorzaken. Copd (waaronder astma) onder de wereldbevolking is volgens wetenschappers fors aan het toenemen. Grote vervuilers zijn slecht gefilterde kolencentrales, auto's, vliegtuigen, mega stukken oerwoud die in de fik worden gestoken om plaats te maken voor palmolie plantages, China giga veel kolen fijnstof produceert dat de hele wereld over waait etc. Palletkachels vind Groenlinks wél goed, maar gas niet .. terwijl je zat artikeken leest dat mensen die kachels niet goed weten te stoken en buren steen- en been klagen.

    Duitsland blijft gewoon fors bruinkool winnen omdat de kerncentrales dicht moesten en in Nederland mogen spiksplinter nieuwe en goedgefilterde kolencentrales dicht blijven, moeten we per direct van het gas, terwijl we het beste gasnetwerk van Europa hebben.

    Pure kapitaalvernietiging vanwege een CO2 hoax ...
  3. [verwijderd] 20 september 2018 07:58
    mss is Kernenergie dan toch 'n goede variant ?

    PS: Duitsland (RWE) bouwt nog nwe steenkolencentrale tussen Kerkrade en Keulen
    Daarvoor wordt bos gekapt(ondanks boomhutten van de tegenstanders) om te kunnen mijnen aan de oppervlakte
    PS: NL gasnet gebruikt NL ook voor import en o.a.export naar Duitsland, Belgie en Frankrijk
    PS: in Maasbracht staat ,ongebruikt sinds de aflevering 1 gascentrale(Essent),goed voor 2 miljoen huishoudens(mss iets voor de belgische nood wegens Kernenergiecentrale problemen
    PS: het beste is dat er onderzoekscie komt na de zgn klimaattafels ?
  4. [verwijderd] 20 september 2018 08:31
    quote:

    Tom Riddle® schreef op 20 september 2018 07:13:

    [...]
    Hard gegeven is wel dat fossiele brandstoffen (juist kolen-en hout .. en in veel mindere mate gas) .. fijnstof veroorzaken. Copd (waaronder astma) onder de wereldbevolking is volgens wetenschappers fors aan het toenemen. Grote vervuilers zijn slecht gefilterde kolencentrales, auto's, vliegtuigen, mega stukken oerwoud die in de fik worden gestoken om plaats te maken voor palmolie plantages, China giga veel kolen fijnstof produceert dat de hele wereld over waait etc. Palletkachels vind Groenlinks wél goed, maar gas niet .. terwijl je zat artikeken leest dat mensen die kachels niet goed weten te stoken en buren steen- en been klagen.

    Duitsland blijft gewoon fors bruinkool winnen omdat de kerncentrales dicht moesten en in Nederland mogen spiksplinter nieuwe en goedgefilterde kolencentrales dicht blijven, moeten we per direct van het gas, terwijl we het beste gasnetwerk van Europa hebben.

    Pure kapitaalvernietiging vanwege een CO2 hoax ...
    Ik geloof persoonlijk ook niet in de fijnstofdiscussie.
    Of mensen in een stad moeten significant jonger sterven dan mensen van het land aan longziektes die daar ook veel meer moeten voorkomen.
    Vroeger stookten de mensen alleen op hout, hadden die allemaal longkanker en astma?
    Nee, ik geloof dat die dingen veel meer komen door overdreven hygiene, teveel medicijnen op jonge leeftijd, kunstmatige voedingsmiddelen incl E-nummers en vaccinaties bijvoorbeeld.
    Tevens het met hoge mate gebruiken van bestrijdingsmiddelen, kleurstoffen enz.
    Onze sloten die vroeger vol vis zaten, tegenwoordig amper nog. Insecten met 50%+ doodgegaan in 10 jaar... dat soort dingen. Ik heb zelf Astma, was ermee geboren. Ging weg toen ik stopte met kunstmatig voer als suiker en alles met E-nummers.
  5. [verwijderd] 20 september 2018 09:15
    quote:

    LandCruiser70 schreef op 20 september 2018 08:31:

    [...]

    Of mensen in een stad moeten significant jonger sterven dan mensen van het land aan longziektes die daar ook veel meer moeten voorkomen.

    Er is niet minder fijnstof op het platteland dan in steden.

    www.ad.nl/nieuws/in-de-polder-is-het-...
  6. [verwijderd] 20 september 2018 09:39
    Ongetwijfeld zal de volgende generatie ons hartelijk uitlachen om onze windmolentjes en miljoenen zonnecellen. Het is een onzinnig links idee, dat de mensheid de temp. op aarde zou beïnvloeden. Het plan is ontstaan om grote firma's te belemmeren in groei door super belastingen, die dan weer naar de zwartjes in Africa gaan
  7. forum rang 4 midjj 20 september 2018 09:45
    quote:

    Ronald Engels schreef op 20 september 2018 02:15:

    Nog een Link,

    Naar Henrik en Jacob Svensmark, The Connection between Cosmic Rays, Clouds and Climate.

    youtu.be/iFlNS2PX4yI

    M.v.g. Ronald Engels
    Interessante en zeer recente link! Ook zijn opmerking aan het einde van het interview: Zijn ervaring om funding te krijgen voor zijn onderzoek naar het effect van de zon op Climate change is extreem lastig t.o.v. funding voor Climate Change onderzoek via CO2. Het moge duidelijk zijn dat er dus helaas wel een invloed is van politiek op wetenschap. Het zou inderdaad 100% andersom moeten zijn zoals Maurice eerder terecht betoogde. De praktijk lijkt dus helaas weerbarstiger. Men gelooft alleen de consensus en alles wat daar tegenin gaat krijgt nauwelijks een kans.
    Uiteindelijk geloof ik wel dat de wal het schip kan keren, mits het hier om een standhoudende theorie gaat. Het begint altijd klein, wordt geriduculiseerd door de mainstream, toch worden er geen steekhoudende weerleggingen gevonden en de support groeit. Meer geld voor verder onderzoek en een nieuwe mainstream ontstaat. We zullen het gaan zien de komende jaren.
  8. forum rang 8 josti5 20 september 2018 10:02
    Yep: de politiek is, in wisselende samenwerking met belanghebbende partijen, continu op zoek naar nieuwe inkomstenbronnen.
    Het doel is geld, en het middel wordt erbij bedacht.
    Zie weer de energietransitie.
    Inkomen en vermogen zijn vanouds de bron; daar is energie bijgekomen, de auto, het verbruik van goederen (BTW), het 'eigen' huis, het 'milieu', de erfenis.
    De accenten worden wat verschoven naar energie. Water zal óók nog wel meer aan de beurt komen.
    Opvallend, dat vliegen volledig buiten schot gebleven is. Blijkbaar ijzersterke lobby, daar op Schiphol. Er komt nu een symbolisch bedragje - en wellicht is dat, zoals gebruikelijk, het eerste schaap, voordat de grote kudde over de dam komt.
  9. Chimpie 20 september 2018 10:24
    Hier een (lange) uitleg van de feiten in het Engels, geleend uit een ander forum. Een van de problemen van het broeikaseffect is dat er veel mensen een mening over hebben zonder er iets over te weten. De 15 stappen hier beneden zijn de basis en onomstreden.
    Naar mijn mening valt er pas een discussie te voeren als je onderstaande processen snapt. Het is lang maar het is natuur/scheikunde van het niveau middelbare school.

    ______________________________________________

    Why is CO2 the most important greenhouse gas?

    1) The earth receives most of its heat from the sun in the visible spectrum (the sun is a black body emitter with a surface temperature of 5778K). At the orbit of the Earth, the intensity of the sun is 1350W/m^2. This varies slightly with the earth's orbital parameters, therefore we get Milankovich cycles (but these are also well understood and bringing them in at this point would not be pedagogical). It also varies with the number of sunspots (they are cooler) --- this is also well understood and in the advanced model but too much to introduce at this point.

    2) The amount of heat the Earth absorbs from the sun is thus I_sun=1350W/m^2 times the area that's facing the sun or pi radius^2 ... and we subtract the Earth's albedo (which is 0.33 ... we can leave this as a parameter or a microphysics simulation for later on. People do that too. E.g. when the ice cap melt, the albedo goes down.) So in total I_sun pi r^2 (1-alpha) ... that's about 1000W/m^2.

    2) The earth emits this in the infrared band (the earth is also a black body emitter with a surface temperature of 288K). A blackbody emitter radiates via the Stefan-Boltzmann law, so the surface of the earth (goes out in all directions) or 4 pi r^2 times sigma*T^4, where T is the Earth's surface temperature, and sigma is the Stefan-Boltzmann constant which is 5.67e-8 in SI units (I'll keep everything in SI). I_earth = 4pi r^2 sigma T^4

    3) There's an energy balance between the two so that ingoing energy from the sun matches outgoing energy from the earth. So I_sun = I_earth. If this is not in balance, the earth would either heat up or cool down until it is satisfied because if you heat up an object (like the earth) then it will start emitting infrared until it's in balance. This happens at the equilibrium temperature. We can solve for that, so

    I_sun pi r^2 (1-alpha) = 4pi r^2 sigma T^4 => T^4 = (1-alpha) I_sun / (4 sigma) ... Everybody has all the numbers, so please calculate.

    You should all get 251.3K for the Earth's surface temperature.

    This is high school level, so everybody reading along should be able to get the same number I did.

    No, don't just trust me. Calculate and verify.

    Now, you'll notice a one thing. This result is much lower than the actual observed surface temperature of 288K. Why is that? It's because I haven't added greenhouse gases yet. Fourier noticed the same thing back in 1826 which caused him to postulate the greenhouse affect.

    Currently our model has no atmosphere, but it does account for energy balance.

    4) Now lets add an atmosphere to see the greenhouse effect. The greenhouse effect works because the atm (greenhouse) doesn't stop visible light (it's transparent to visual wavelenghs) but it attenuates/stops/reduces infrared. You can see through glass with your eyes but it stops heat so you can't feel it on your skin. Try it. The key point here is that radiation comes in at visible wavelength. Gets absorbed ... and tries to leave at a much longer wave lengths where it gets blocked.

    This is how greenhouses work. Basic physics.

    I'll do a simple slab model (aka a one-zone model).

    Instead of just the Earth and the Sun. We'll have Earth, Sun, and atmosphere (which you can think of as a piece of glass---made out of air), so we need to keep track of where the radiation goes and leaves from all three of them. Fourier understood this almost 200 years ago.

    As before, ultimately, what comes in eventually goes out once a temperature equilibrium is reached.

    * All radiation from the sun (visible) goes directly through the atmosphere to the surface. That was I_sun (1-alpha) pi r^2.
    * All the radiation from the Earth (infrared) goes up and gets absorbed in the atmosphere (because it's opaque to IR). That was 4pi r^2 sigma T^4.
    * Half of the radiation (also infrared) from the atmosphere is radiated back down I_atm_down and half is radiated up I_atm_up.

    How does this add up?

    What goes into the atmosphere equals what comes out: 4pi r^2 sigma T_earth^4 = I_atm_down + I_atm_up or because I_atm_up = I_atm_down and both are 4pi r^2 sigma T_atm^4 (think of the atmosphere as a hollow sphere with the Earth in the center that radiates in both directions, we get sigma T_earth^4 = 2 sigma T_atm^4

    What goes into the ground equals what comes up. The ground is receiving visible light from the sun and IR from the atm, so
    4pi r^2 sigma T_Earth^4 = pi r^2 I_sun (1-alpha) + 4pi r^2 sigma T_atm^4

    What enters the atm+earth system from the sun goes out from the atm (via IR), so I_atm_up= 4pi r^2 sigma T_atm^4 = I_sun pi r^2 (1-alpha)

    Now, lets calculate T_earth in the slab-model.

    sigma T_atm^4 = I_sun (1-alpha) / 4 and we insert that in sigma T_earth^4 = 2 sigma T_atm^4 = 2 I_sun (1-alpha) / 4, so T_earth = 298K.

    That's 47 degrees higher. Cf 251K wo atm and 288K measured. Not bad for something that can be calculated on the back of a napkin.

    Anyone who has followed along so far now understands the greenhouse effect at a level of the science community at the time Andrew Jackson was president or at the level at which high school students should be able to in current times. This is basically highschool physics and if I didn't have to type it down, I could sketch it out in 5 minutes on a black board.

    If you made thus far you now understand why the Earth is neither colder than Hoth nor warmer than Vulcan.

    Again, don't trust me, verify, using HS level science.

    However, even this crude level is far more sophisticated that anything that happens in the comment space when uninformed laymen talk about climate change. This makes me sad and this is why I urge people to either read a book or get out of the kitchen when the adults are cooking. Real models are much more sophisticated. The ones I worked with to model surface/atmospheres on neutron stars and white dwarf stars had hundreds of zones detailing the transport between each of them in far greater detail including how the gas could diffuse and react chemically. Modern climate models are much more sophisticated still.

    5) But all I've shown so far is why red-herring comments about "only a 1% difference" are eye-rolling to someone who understands the physics at this simple level. Try increasing I_sun by 1% and see what effect you get on the surface. Temperature goes up by 0.7C or 1.2F ... which also happens to be around the order at which temperatures have actually increased since we started adding CO2.

    Key-point: Difference in the energy balance goes with the fourth root (because Stefan Boltzmann) .. and so because I'm one of those people who can do math in my head, I'll just go ... (1.01)^0.25 * 288K = 288.7K
  10. Chimpie 20 september 2018 10:25
    Tekst was te lang, hier vervolg:

    So lets deal with CO2 now ... and then with water and clouds after that.

    6) Consider what would happen if we increase the thickness of the glass slab. More I_earth_up gets absorbed => It heats up until a new energy-balance is established at a higher temperature.

    7) Now when dealing with the atmosphere, one has to understand the interaction between photons and molecules. This requires quantum electrodynamics which is probably beyond you monkeys ;-) ... This stuff can also be calculated and measured in great detail. QED dates back to early Feynman. I did such calculations in nuclear physics as a MSc rather than atomic physics, but the basic idea is the same. The detailed calculations take about 1 page of type set equations for each emission line but the principles are fairly pedestrian.

    Hopefully you recall playing around with a spectroscope in high school and understand how photons can excite the electron in a hydrogen atom to higher quantum level (orbital) and how this causes emission lines when it drops down again. It also works the other way around. If instead of heating up hydrogen and looking at the emission, you instead irradiate hydrogen with wide-spectrum black body radiation, you will see that the hydrogen atoms absorb wave lengths that match the difference between its quantum levels of the possible orbitals. You can also see these absorption lines in stars (the photosphere) and interstellar clouds/gasses. This is how we know what elements are present on the sun and on other stars and the universe in general.

    If atoms combine into molecules, some orbitals will be shared. Shared orbitals cause chemical bonds. This is how chemistry works at a deep level.

    If you hit a molecule with a photon, several things can happen. Lets consider CO2 which looks like this O=C=O with two double covalent bonds on a straight line (exactly 180 degrees). Think of it as three balls on a line connected by two springs. What happens if you blow a gust of air on that (illustrating hitting it with a photon).

    It can move (translational energy, kinetic, velocity)
    It can rotate (rotational energy)
    The spring can stretch so both oxygens moves away from the carbon (potential energy)
    The carbon can move towards one oxygen and away from the other along the line
    The carbon can be moved sidewards away from the centerline thus bending the molecule
    It can be blown apart if you hit hard enough

    What's the physical consequence:

    It can move (heat)
    It can rotate (heat)
    The spring can stretch so both oxygens moves away from the carbon (heat)
    The carbon can move towards one oxygen and away from the other along the line (this creates an electric dipole and as the molecule goes back to normal this dipole emits radiation at 2349/cm---an emission line. It will also absorb radiation at that wavelength very well---an absorption line).
    The carbon can be moved sidewards away from the centerline thus bending the molecule (this also creates an electric dipole similar to the above but at 667/cm)
    It can be blown apart if you hit hard enough (ionization)

    8) It's the ability to create an electric dipole (requires molecular level asymmetry) in the molecule that determines whether a given molecule responds to infrared energies. This is possible in CO2, H2O, and NO2 so they're all active in the IR band. O2 and N2 which makes up the majority of the atmosphere do not have dipole moments (there's no asymmetry possible ... they look like this O=O and N triple-bond N ... you can't deform them into asymmetry... all they ever do is the first three entries on my list) and this is why they don't interact with IR. CH4 and halocarbons are more complex and easily made asymmetric by bashing them with a photon and so they are also active in IR. CO and NO are also active. If you put molecules next to each other so they touch like in liquid or gas, they easily share energy with everybody else and so the whole thing begins to act like a black body. This is why solid or liquid objects (hot iron) don't appear as emission lines.

    So now we know why some molecules are responsive in IR and others are not. And also why this is relevant to gasses but not liquids and solids.

    We know all this because atomic physics tells us and because we can measure it directly using equipment found in a high school laboratory. Historically people started caring about CO2 because it interfered with heat-seeking (infrared) missiles as they weren't properly calibrated to acount for the effect that CO2 absorbed the IR from the target plane's engine.

    9) How do we know which of them are relevant greenhouse gases and which are not?

    We need to go back to the slab model and increase the sophistication a little.

    In the slab model (step 4), we assumed that the atmosphere was completely opaque to the outbound radiation from the earth. This gave an Earth temperature of 298K (10C too high). Whereas in the initial model (step 1-3) we assumed that it was completely transparent and this gave a temp of 251K (37C too low). And the actual temperature is 288K so somewhere in between.

    This makes sense because the actual atmosphere is also somewhere in between fully opaque and fully transparent. It suggests an upper limit to how hot the surface can get on average even if the atmosphere becomes fully opaque to infrared.

    Again ... if you're building heat seeking missiles for the air force, you need to know and account for this. Something the air force learned in the late 1940s. Conversely, if you dispute this, you can't get your missiles to work. In other words, this is one of those "you must be this smart to ride this ride"-tests. If you don't know how this works, you basically have no business here. Now, ...

    If there were no atmosphere (like on the moon), the incoming spectrum would be a nice blackbody spectrum at 5700K (the solar bb temperature). And if we point a spectrometer at the moon (outside the earth's atmosphere, obviously, for reasons that will shortly become clear), we'll see a nice bb spectrum centered at the lunar surface temperature.

    But if we look at the bb spectrum of planet Earth from the moon (or a satellite) ... which we do ... we'll see absorption lines. The ones discussed in steps 7 and 8 above.

    See graph here: paos.colorado.edu/~fasullo/pjw_class/...

    What happens physically is that CO2 and H2O and other greenhouse molecules absorb radiation. You can see this directly in satellite measurements.
  11. Chimpie 20 september 2018 10:28
    10) Some deniers (actually large numbers of them googling each other's websites and reposting their personal ignorance like a rashy anti-vaxxer measles epidemic) only focus on the absorption aspects will note that if you keep adding gas, you will eventually saturate the band (=a range of frequencies) and therefore claim further CO2 emissions won't matter. This is true if you're building heat seeking missiles and only look at what radiation gets true. However, it demonstrates an ignorance of how the energy-balance is what's important. Here's how that works:

    11) Saturation is easy to understand. Suppose you have a slab of tinted glass that reduces intensity by 50%. Like a pair of sunglasses. What happens to the intensity if you add another slab behind it? It goes down to 25% not 0%. If you add a third, you get to 12.5% and so on. The effect is therefore logarithmic and not linear. The biggest impact from a greenhouse gas thus comes from the first tiny-piddly amounts. This is why a halocarbon molecule are the most effective GHGs ($1000 dollars bills if you will). Because they never existed before humans started emitting them and they absorb on a band of wavelengths that would otherwise remain free to go into space without heating anything. Methane (CH4) is also a powerful molecule ($100 bill) because the density is also in the ppb range (parts per billion). Conversely, there was 280ppm CO2 ($20 bill) in 1880. That already absorbed quite a bit. Now in 2017 there's 402ppm and so 43% more but because of the band saturation effect, we're not trapping 43% more energy in that part of the outgoing IR band. So think of this as a situation where you had 10 slabs already ... but then started the industrial revolution and added 4 more slabs. Think about it. The answer is not 43% when it comes to energy balance or radiation intensity. The answer is on the order of 1%ish.

    If you were talking heat seeking missiles, you can fix this by simply building a more sensitive detector or detecting just outside the band. IOW, you just calibrate your seeker head. Problem solved.

    PS) This is also why when people talk about climate sensitivities, they speak in terms of doubling rates. Raising CO2 from 280ppm to 560ppm has the same effect (expected to increase surface temps around 3C) as raising CO2 from 560ppm to 1120ppm (=> an increase of 2 doublings times 3C so 6C). This "short-hand rule" works due to the basic physics of how absorption works and the fact that most other responses in more sophisticated system are linear (so far).

    12) One might imagine (if one is an electrical engineer or someone who's never dealt with atmospheres---fair enough, I've worked with atm as a publishing scientist but I understand that most scientist haven't so I accept that people can slip when they're new) that adding more and more GHG to the atmosphere would just drive the bands down to zero and that'd be the end of that argument. I presume you all clicked on the link above. If not, do it now. So for example, there would be a bunch of completely blacked out but narrow absorption lines or bands (just like a spectrometer in high school) but the radiation would get clean through in all other parts of the blackbody spectrum.

    Not so in an atmosphere. The reason is heat. Remember the first two entries on my list? As the molecules get bashed they move faster. This allows them to absorb outside their frequency due to the Doppler effect. Here's an analogy. Put one of those ukulele tuners in your car. The tuner will show if you're playing an A note or a G note when you blow a whistle or strum a string. Suppose your tuner only responds to A notes. Now if the car is parked, then it will respond to an A-note being played from the sidewalk. However, if you drive your tuner (molecule) away from the fork (radiation) it will also respond to a G note or an F note and so on. Because the soundwaves are "redshifted" and sound like an A to the tuner. Vice versa if you drive towards the sound. If you have a bunch of tuners driving around (like molecules in a gas) the central A sound (frequency) they will be able to detect more tones (larger band) than if they were standing still.

    Because a gas has molecules with a wide range of speeds (they have a Boltzmann distribution --- this is first year physics, so beyond high school), the bands become wider.

    13) So how do we figure out which green house gas is the strongest (accounting for density)?

    You take the blackbody spectrum and then you take the absorption spectrum (which follows from the densities of the respective molecules, H2O, NO2, CO2, CO, NO, CFCs (halocarbons), ... ) and then you see which GHG prevents the most I_earth from getting through.

    You can either do this directly via satellite measurements or you can use a radiation transport code which have been known and used since the 1950s.

    It turns out that it's H2O. Blaming things on water vapor is also a common denialist point but it misses the pertinent physics of the complex system. I'll get back to that in step 15.

    14) The second one is CO2. The third is Methane. Adding CFC is nitpicking or details. (So all the $20 bills add up to more than all the $1000 bills).

    15) If you add in the CO2 effect, which Arrhenius did in 1896 (here's the peer-reviewed paper: www.rsc.org/images/Arrhenius1896_tcm1... )... you get very close to the actual observed value but you come in too low.

    So what's the difference between CO2 and H2O. Why aren't people concerned about H2O when it's the stronger one. Conversely, why is it a bullshit argument to say that CO2 is irrelevant because H2O is stronger? Let me hit you with the clue-stick.

    H2O is part of the water cycle. If you evaporate more water into the atmosphere, then once you hit 100% relative humidity it condenses and falls down as rain---a familiar phenomena to most people. In other words, the amount of water the atmosphere can hold at a given temperature is limited by the temperature (and pressure). In addition this cycle is fast. Water in the atmosphere comes down and goes up quickly based on what the weather is like. In other words, H20 responds immediately to temperature because "relative humidity" and "rain". Keywords: immediate and temperature-sensitive.

    CO2 on the other hand has no mechanism to rain down like that. Unlike CO or NO (which break down quickly --- and are therefore irrelevant GHGs) CO2 stays up in the atmosphere for hundreds and thousands of years. This is why the carbon cycle is what drives climate, not the water-cycle (aka the weather). In the carbon cycle, CO2 is what plants crave ... but unless you bury them underground and stop them from decaying, the CO2 comes back up again when they die. The only way to reduce CO2 is via reacting with rocks. It's a geological process. What we do by burning fossil fuels is to shift his carbon cycle. Keyword: cumulative and temperature-increasing

    However, because water vapor is stronger and immediately response, it is leveraged by the accumulating CO2 levels. CO2 shifts the radiative balance. Therefore, the atmosphere gets slightly warmer (step 1-4). It can therefore hold more water (this step); and this boosts the greenhouse impact of CO2 (step 13).

    ...
  12. Chimpie 20 september 2018 10:30
    In the 15 steps above, I explained the basic mechanism of climate change. All these steps were known by physical scientists by 1950. Most of them were known by 1900. And if you read Fourier from 1826 (I linked the paper somewhat further back), a lot of physical insight was available 190+ years ago. The average noob who's read Fourier's original paper is miles ahead on the modern climate debating clown who learned everything he knows from google.

    IOW... if the average physical scientist from year 1850 or 1950 were to google the current popular level of climate science "debate", he'd see it as bunch of feking morons. Not because of disagreements when it comes to the conclusion but because the level of sophistication and insight would embarrass the average 18th century renaissance man.

    I realize that this is a real political problem, but it's definitely not a scientific problem. It only appears to be a scientific issue because of overall scientific cluelessness.

    Understanding the basic science is NOT hard, nor does it require extremely sophisticated expert level math or ability to conceptualize highly abstract constructs. It's not even close to even basic 1930s style quantum physics (much less QED) or general relativity in terms of the demands it makes on the reader.

    Most participants and spectators when it comes to internet debates about climate science don't seem to comprehend the fundamental mechanism as laid out in steps 1 to 15. Rather than talking about how climate or temperatures have changed in this place or that place. I think time is much better spent going through steps 1-15 above. Just knowing the basic physics works will make it possible detect a lot (up to 20%) of the most common uninformed denialist arguments: H20 has more impact (misleading), CO2 is not important(bullshit), there's not enough CO2 to be important(ignorant), the radiation is saturated(dumb), CO2 is not a greenhouse gas(stupid), the greenhouse effect does not exist(wtf?). By the Pareto effect, these also happen to be the 80% most commonly raised complaints because most people are clueless about the physics. If you've read this far and didn't pick up a calculator yet, you're still one of those people.

    ______________________________

    Sorry voor de 4 posts achter elkaar, dit ivm de lengte van de tekst.

    Als dit voor je nog geen gesneden koek is, neem er even te tijd voor en probeer het te begrijpen. Als iedereen bovenstaande processen snapt kunnen we de discussie tot een veel hoger niveau tillen.
  13. [verwijderd] 20 september 2018 10:44
    Stel dat het inderdaad zo is dat invloed van de mens op de wel degelijk opwarmende aarde en atmosfeer minimaal is. Moeten we dan maar gewoon doorgaan op de huidige wijze, waarbij steden onleefbaar worden vanwege stofuitstoot. Waar onze zeeen steeds meer een vuilnisbeld worden. Kortom waar economische groei heilig is ? Ik vind dit een non discussie. We moeten proberen met alle macht wel positieve invloed te krijgen op ons leefmilieu. Gelijkertijd ben ik zeer pessimistich. Ga je in Brazilie en Indonesie de bomenkap tegenhouden, als de mensen daar niets te eten hebben en het puissant rijke westen bereid is een goede prijs te betalen voor tropisch hardhout, voor hamburgers of Soja? Kansloos. Er zijn simpelweg veel te veel mensen op aarde. 20% van de bevolking heeft alle rijkdom en voedsel beschikbaar. 80% van bevolking moet elke dag vechten om te overleven en willen ook een goede toekomst. We denken dat we nu een probleem hebben met migratiestromen vanuit Afrika. Dit probleem wordt alleen drastisch groter. Als je geen toekomst en voedsel hebt, ga je het halen waar het wel beschikbaar is. Dus juist in het rijke westen. Ik zie mijzelf als gast op aarde. En als gast heb je te gedragen en laat je geen rotzooi achter.
  14. [verwijderd] 20 september 2018 11:37
    quote:

    LandCruiser70 schreef op 20 september 2018 08:31:

    [...]

    Ik geloof persoonlijk ook niet in de fijnstofdiscussie.
    Of mensen in een stad moeten significant jonger sterven dan mensen van het land aan longziektes die daar ook veel meer moeten voorkomen.
    Vroeger stookten de mensen alleen op hout, hadden die allemaal longkanker en astma?
    Nee, ik geloof dat die dingen veel meer komen door overdreven hygiene, teveel medicijnen op jonge leeftijd, kunstmatige voedingsmiddelen incl E-nummers en vaccinaties bijvoorbeeld.
    Tevens het met hoge mate gebruiken van bestrijdingsmiddelen, kleurstoffen enz.
    Onze sloten die vroeger vol vis zaten, tegenwoordig amper nog. Insecten met 50%+ doodgegaan in 10 jaar... dat soort dingen. Ik heb zelf Astma, was ermee geboren. Ging weg toen ik stopte met kunstmatig voer als suiker en alles met E-nummers.
    Vroeger waren er niet zoveel mensen, dus was er niet zoveel fijnstofvervuiling die door de mens zelf veroorzaakt wordt.
    Vroeger was Schiphol meer dan groot genoeg voor die paar vliegtuigen en vroeger kon je overal je auto nog in de straat kwijt etc. .... ;-)
  15. forum rang 6 izdp 20 september 2018 13:05
    quote:

    BEN RisQuant schreef op 20 september 2018 09:15:

    [...]

    Er is niet minder fijnstof op het platteland dan in steden.

    www.ad.nl/nieuws/in-de-polder-is-het-...
    Niet eerlijk om dat het platteland te noemen.
    Dat heet daar het bio-industriegebied.

    Zonder die industrie is het veel schoner.
  16. [verwijderd] 20 september 2018 13:45
    quote:

    BEN RisQuant schreef op 20 september 2018 12:48:

    Denk niet dat veel mijnwerkers het met je eens zijn.
    Dat is een veel extremer voorbeeld. Mijn opa was kolenboer trouwens, mijn vader heeft als jonge knul altijd kolenwagons leeggeschept.... leeft nog steeds. Maar goed... Je begrijpt mijn standpunt wel, je doet alleen een beetje raar om het punt te ontkrachten.
39.206 Posts
Pagina: «« 1 ... 5 6 7 8 9 ... 1961 »» | Laatste |Omhoog ↑

Meedoen aan de discussie?

Word nu gratis lid of log in met je emailadres en wachtwoord.