CRISPR-Based Gene Editing of *KLKB1* Resulted in Long-Term Plasma Kallikrein Protein Reduction and Decreased Attack Rate in Patients With Hereditary Angioedema

Updated Results From a Phase 1 Study

Hilary Longhurst,^{1*} Padmalal Gurugama,² Karen Lindsay,¹ Remy S. Petersen,³ Lauré M. Fijen,³ Carri Boiselle,⁴ Yuanxin Xu,⁴ Adele Golden,⁴ James Butler,⁴ Mrinal Y. Shah,⁴ David Maag,⁴ Danny M. Cohn²

¹Te Whatu Ora/Te Toka Tumai, Auckland, New Zealand and Department of Medicine, University of Auckland, New Zealand; ²Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK; ³Amsterdam University Medical Center, Amsterdam, The Netherlands; ⁴Intellia Therapeutics, Cambridge, MA, USA

*Presenting author

Presented at the EAACI Congress 2024, May 31-June 3, 2024, Valencia, Spain

Disclosures

Dr. Longhurst has acted as a consultant or speaker, received educational sponsorship or participated in research with BioCryst Pharmaceuticals, CSL Bering, Intellia Therapeutics, KalVista Pharmaceuticals, Pharming, and Takeda.

Kallikrein is a clinically validated therapeutic target for preventing HAE attacks

C1-INH, C1 esterase inhibitor; HAE, hereditary angioedema; HMW, high-molecular weight. Adapted from Zuraw BL. *N Engl J Med.* 2008;359(10):1027-1036.

Longhurst HJ, et al. N Engl J Med. 2024;390:432-441.

NTLA-2002 Global Phase 1/2 Study Design and Eligibility Criteria: Two-Part, Multicenter Study in Adults With HAE Types I and II

Day -1: Oral dexamethasone 8 mg (or equivalent)

Dav 1: IV dexamethasone 10 mg (or equivalent), IV or oral H1 and H2 blocker, C1-INH

Evaluate safety and tolerability **OTHER OBJECTIVES**

PK, PD, clinical efficacy (attacks)

PRIMARY OBJECTIVES

Clinical efficacy (attacks through Week 16) **OTHER OBJECTIVES**

PD, safety and tolerability, PK, QOL

KEY INCLUSION CRITERIA

- Documented diagnosis of Type I or Type II HAE
- At least 3 investigator-confirmed HAE attacks within 90 days prior to screening
- Access to acute therapies to treat HAE \checkmark attacks
- Concurrent therapy with standard of \checkmark care, long-term prophylaxis allowed

KEY EXCLUSION CRITERIA

- Concomitant use of ecallantide or lanadelumab
- Known hypersensitivity or prior infusion-related reaction to LNP components
- History of cirrhosis, hepatitis B, × hepatitis C, or HIV

C1-INH, C1 esterase inhibitor; H1, histamine receptor 1; H2, histamine receptor 2; HAE, hereditary angioedema; LNP, lipid nanoparticle; PD, pharmacodynamics; PK, pharmacokinetics; QOL, quality of life.

6

Patient Demographics and Characteristics

Parameter	25 mg (n=3)	50 mg (n=4)	75 mg (n=3)	All Patients (N=10)
Age, years Median (range)	30 (26-52)	65 (52-73)	45 (27-49)	51 (26-73)
Sex, n (%) Male Female	3 (100)	1 (25) 3 (75)	2 (67) 1 (33)	6 (60) 4 (40)
Weight, kg Median (range)	83 (78-135)	86 (74-107)	72 (64-84)	83 (64-135)
HAE type, n (%) Type I Type II	2 (67) 1 (33)	2 (50) 2 (50)	2 (67) 1 (33)	6 (60) 4 (40)
Prior use of long-term prophylaxis, n (%) Yes No	2 (67) 1 (33)	4 (100)	3 (100)	9 (90) 1 (10)
Concomitant long-term prophylaxis, n (%) ^a Yes No	2 (67) 1 (33)	3 (75) 1 (25)	1 (33) 2 (67)	6 (60) 4 (40)
Historical monthly attack rate, mean (SD)	6.0 (6.92)	1.2 (0.47)	7.7 (8.00)	4.6 (5.83)
Typical attack severity, n (%) Mild Moderate Severe	1 (33) 1 (33) 1 (33)	2 (50) 2 (50) 0	1 (33) 1 (33) 1 (33)	4 (40) 4 (40) 2 (20)

^aOngoing at time of study drug administration. HAE, hereditary angioedema; SD, standard deviation. Longhurst HJ, et al. N Engl J Med. 2024;390:432-441.

NTLA-2002 Continues to Be Well-Tolerated Across All Dose Levels

TEAEs Occurring in ≥2 Patients	25 mg (n=3)	50 mg (n=4)	75 mg (n=3)	All Patients (N=10)
Any TEAE	3	4	3	10
Infusion-related reaction	2	2	3	7
COVID-19	3	1	2	6
Fatigue	1	3	2	6
Upper respiratory tract infection	1	1	3	5
Myalgia	0	0	3	3
Oropharyngeal pain	2	0	1	3
Abdominal discomfort	0	2	0	2
Headache	0	0	2	2
Viral upper respiratory tract infection	0	0	2	2

With a median follow-up time of 20.1 months:

- No treatment-emergent AEs \geq Grade 3
- No treatment-emergent SAEs
- No AESIs other than IRRs
- No liver enzyme elevations or platelet count decreases > Grade 1
- No clinically significant shifts in coagulation parameters

AE, adverse event; AESI, adverse event of special interest; IRR, infusion-related reaction; SAE, serious adverse event; TEAE, treatment-emergent adverse event.

A Single Dose of NTLA-2002 Continues to Show Dose-Dependent and Durable Reductions in Plasma Kallikrein Protein Over Time

Baseline value is the average of 2 samples on separate days during the screening period and 1 predose on study Day 1. Only visits completed by all patients within a cohort are presented. Dashed line represents targeted minimum reduction.

Asterisks indicate the start of additional ongoing follow -up since the previous datacut of 17Feb2023.

SD, standard deviation.

8

A Single Dose of NTLA-2002 Led to a 98% Mean Reduction in Monthly HAE Attack Rate Through the Latest Follow-up

	Percentage Change from Baseline ^a Mean (SD)				
	All Attacks	Attacks Requiring On-Demand Treatment	Moderate-to-Severe Attacks		
Weeks 1-16 (Primary observation period)	-90% (17%)	-82% (22%)	-95% (8.2%)		
Weeks 5-16	-92% (16%)	-86% (28%)	-96% (7.7%)		
Post-primary observation period ^b	-99% (1.4%)	-100% (0.49%)	-100% (0)		
On-study period ^c	-98% (2.7%)	-97% (3.5%)	-99% (1.3%)		

Mean (SD) monthly attack rate post-primary observation period is 0.01 (0.02)

^aPatients without the indicated type of attack at baseline are not included in percentage change calculations. ^bPost-primary observation period is defined as Week 16 through the last HAE attack assessment as of the data cutoff date. ^cOn-study period is defined as the time from the administration of NTLA-2002 through the last HAE attack assessment as of the data cutoff date. A month is defined as 28 days.

HAE, hereditary angioedema; SD, standard deviation.

This presentation includes data for an investigational product not yet approved by regulatory authorities.

8 of 10 Patients Have Been Attack-Free Since the End of the Primary Observation Period

Pt, patient. A month is defined as 28 days.

10

Dark gray arrows indicate additional ongoing follow -up since the previous data cut of 17Feb2023.

Latest Data Continue to Reinforce the Potential of a Single Dose of NTLA-2002 to Be a Functional Cure for Patients With HAE

- NTLA-2002 continues to be well-tolerated at all doses; all AEs were transient and either Grade 1 or 2
- NTLA-2002 resulted in dose-dependent and durable reductions in plasma kallikrein protein, which have remained stable for the duration of follow-up
- Robust and durable attack reductions continue to be observed in all patients following NTLA-2002
 - Across all patients, a 98% mean reduction in monthly HAE attack rate was observed through the latest assessment, with a median follow-up of 20.1 months
 - 8 of 10 patients remain attack-free since the end of the primary observation period
 - · Longest attack-free interval was 26 months through the latest assessment
 - No patients have resumed other long-term prophylaxis
- Phase 2 portion of this study is fully enrolled, with results expected in 2024

Acknowledgements

We wish to extend our gratitude to:

- ✤ The patients, their caregivers, and their families
- Study site coordinators and staff
- The staff of Simbec-Orion for assistance with study management and operations support
- Ilia Antonino (employee of Intellia Therapeutics) and Apollo Medical Communications, for editorial support

